1,776 research outputs found

    Gene set based ensemble methods for cancer classification

    Get PDF
    Diagnosis of cancer very often depends on conclusions drawn after both clinical and microscopic examinations of tissues to study the manifestation of the disease in order to place tumors in known categories. One factor which determines the categorization of cancer is the tissue from which the tumor originates. Information gathered from clinical exams may be partial or not completely predictive of a specific category of cancer. Further complicating the problem of categorizing various tumors is that the histological classification of the cancer tissue and description of its course of development may be atypical. Gene expression data gleaned from micro-array analysis provides tremendous promise for more accurate cancer diagnosis. One hurdle in the classification of tumors based on gene expression data is that the data space is ultra-dimensional with relatively few points; that is, there are a small number of examples with a large number of genes. A second hurdle is expression bias caused by the correlation of genes. Analysis of subsets of genes, known as gene set analysis, provides a mechanism by which groups of differentially expressed genes can be identified. We propose an ensemble of classifiers whose base classifiers are β„“1-regularized logistic regression models with restriction of the feature space to biologically relevant genes. Some researchers have already explored the use of ensemble classifiers to classify cancer but the effect of the underlying base classifiers in conjunction with biologically-derived gene sets on cancer classification has not been explored

    Accelerated volume loss in glacier ablation zones of NE Greenland, Little Ice Age to present

    Get PDF
    Mountain glaciers at the periphery of the Greenland ice sheet are a crucial freshwater and sediment source to the North Atlantic and strongly impact Arctic terrestrial, fjord, and coastal biogeochemical cycles. In this study we mapped the extent of 1,848 mountain glaciers in NE Greenland at the Little Ice Age. We determined area and volume changes for the time periods Little Ice Age to 1980s and 1980s to 2014 and equilibrium line altitudes. There was at least 172.76 Β± 34.55‐km3 volume lost between 1910 and 1980s, that is, a rate of 2.61 Β± 0.52 km3/year. Between 1980s and 2014 the volume lost was 90.55 Β± 18.11 km3, that is, a rate of 3.22 Β± 0.64 km3/year, implying an increase of ~23% in the rate of ice volume loss. Overall, at least ~7% of mass loss from Greenland mountain glaciers and ice caps has come from the NE sector

    Accelerated volume loss in glacier ablation zones of NE Greenland, Little Ice Age to present

    Get PDF
    Mountain glaciers at the periphery of the Greenland ice sheet are a crucial freshwater and sediment source to the North Atlantic and strongly impact Arctic terrestrial, fjord, and coastal biogeochemical cycles. In this study we mapped the extent of 1,848 mountain glaciers in NE Greenland at the Little Ice Age. We determined area and volume changes for the time periods Little Ice Age to 1980s and 1980s to 2014 and equilibrium line altitudes. There was at least 172.76 Β± 34.55‐km3 volume lost between 1910 and 1980s, that is, a rate of 2.61 Β± 0.52 km3/year. Between 1980s and 2014 the volume lost was 90.55 Β± 18.11 km3, that is, a rate of 3.22 Β± 0.64 km3/year, implying an increase of ~23% in the rate of ice volume loss. Overall, at least ~7% of mass loss from Greenland mountain glaciers and ice caps has come from the NE sector

    A phase I trial of the Ξ³-secretase inhibitor MK-0752 in combination with gemcitabine in patients with pancreatic ductal adenocarcinoma.

    Get PDF
    BACKGROUND: The Notch pathway is frequently activated in cancer. Pathway inhibition by Ξ³-secretase inhibitors has been shown to be effective in pre-clinical models of pancreatic cancer, in combination with gemcitabine. METHODS: A multi-centre, non-randomised Bayesian adaptive design study of MK-0752, administered per os weekly, in combination with gemcitabine administered intravenously on days 1, 8 and 15 (28 day cycle) at 800 or 1000 mg m-2, was performed to determine the safety of combination treatment and the recommended phase 2 dose (RP2D). Secondary and tertiary objectives included tumour response, plasma and tumour MK-0752 concentration, and inhibition of the Notch pathway in hair follicles and tumour. RESULTS: Overall, 44 eligible patients (performance status 0 or 1 with adequate organ function) received gemcitabine and MK-0752 as first or second line treatment for pancreatic cancer. RP2Ds of MK-0752 and gemcitabine as single agents could be combined safely. The Bayesian algorithm allowed further dose escalation, but pharmacokinetic analysis showed no increase in MK-0752 AUC (area under the curve) beyond 1800 mg once weekly. Tumour response evaluation was available in 19 patients; 13 achieved stable disease and 1 patient achieved a confirmed partial response. CONCLUSIONS: Gemcitabine and a Ξ³-secretase inhibitor (MK-0752) can be combined at their full, single-agent RP2Ds

    CSF1R+ Macrophages Sustain Pancreatic Tumor Growth through T Cell Suppression and Maintenance of Key Gene Programs that Define the Squamous Subtype.

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is resistant to most therapies including single-agent immunotherapy and has a dense desmoplastic stroma, and most patients present with advanced metastatic disease. We reveal that macrophages are the dominant leukocyte population both in human PDAC stroma and autochthonous models, with an important functional contribution to the squamous subtype of human PDAC. We targeted macrophages in a genetic PDAC model using AZD7507, a potent selective inhibitor of CSF1R. AZD7507 caused shrinkage of established tumors and increased mouse survival in this difficult-to-treat model. Malignant cell proliferation diminished, with increased cell death and an enhanced TΒ cell immune response. Loss of macrophages rewired other features of the TME, with global changes in gene expression akin to switching PDAC subtypes. These changes were markedly different to those elicited when neutrophils were targeted via CXCR2. These results suggest targeting the myeloid cell axis may be particularly efficacious in PDAC, especially with CSF1R inhibitors

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Two Theileria parva CD8 T Cell Antigen Genes Are More Variable in Buffalo than Cattle Parasites, but Differ in Pattern of Sequence Diversity

    Get PDF
    <p><b>Background:</b> Theileria parva causes an acute fatal disease in cattle, but infections are asymptomatic in the African buffalo (Syncerus caffer). Cattle can be immunized against the parasite by infection and treatment, but immunity is partially strain specific. Available data indicate that CD8(+) T lymphocyte responses mediate protection and, recently, several parasite antigens recognised by CD8(+) T cells have been identified. This study set out to determine the nature and extent of polymorphism in two of these antigens, Tp1 and Tp2, which contain defined CD8(+) T-cell epitopes, and to analyse the sequences for evidence of selection.</p> <p><b>Methodology/Principal Findings:</b> Partial sequencing of the Tp1 gene and the full-length Tp2 gene from 82 T. parva isolates revealed extensive polymorphism in both antigens, including the epitope-containing regions. Single nucleotide polymorphisms were detected at 51 positions (similar to 12%) in Tp1 and in 320 positions (similar to 61%) in Tp2. Together with two short indels in Tp1, these resulted in 30 and 42 protein variants of Tp1 and Tp2, respectively. Although evidence of positive selection was found for multiple amino acid residues, there was no preferential involvement of T cell epitope residues. Overall, the extent of diversity was much greater in T. parva isolates originating from buffalo than in isolates known to be transmissible among cattle.</p> <p><b>Conclusions/Significance:</b> The results indicate that T. parva parasites maintained in cattle represent a subset of the overall T. parva population, which has become adapted for tick transmission between cattle. The absence of obvious enrichment for positively selected amino acid residues within defined epitopes indicates either that diversity is not predominantly driven by selection exerted by host T cells, or that such selection is not detectable by the methods employed due to unidentified epitopes elsewhere in the antigens. Further functional studies are required to address this latter point.</p&gt

    Two Theileria parva CD8 T Cell Antigen Genes Are More Variable in Buffalo than Cattle Parasites, but Differ in Pattern of Sequence Diversity

    Get PDF
    <p><b>Background:</b> Theileria parva causes an acute fatal disease in cattle, but infections are asymptomatic in the African buffalo (Syncerus caffer). Cattle can be immunized against the parasite by infection and treatment, but immunity is partially strain specific. Available data indicate that CD8(+) T lymphocyte responses mediate protection and, recently, several parasite antigens recognised by CD8(+) T cells have been identified. This study set out to determine the nature and extent of polymorphism in two of these antigens, Tp1 and Tp2, which contain defined CD8(+) T-cell epitopes, and to analyse the sequences for evidence of selection.</p> <p><b>Methodology/Principal Findings:</b> Partial sequencing of the Tp1 gene and the full-length Tp2 gene from 82 T. parva isolates revealed extensive polymorphism in both antigens, including the epitope-containing regions. Single nucleotide polymorphisms were detected at 51 positions (similar to 12%) in Tp1 and in 320 positions (similar to 61%) in Tp2. Together with two short indels in Tp1, these resulted in 30 and 42 protein variants of Tp1 and Tp2, respectively. Although evidence of positive selection was found for multiple amino acid residues, there was no preferential involvement of T cell epitope residues. Overall, the extent of diversity was much greater in T. parva isolates originating from buffalo than in isolates known to be transmissible among cattle.</p> <p><b>Conclusions/Significance:</b> The results indicate that T. parva parasites maintained in cattle represent a subset of the overall T. parva population, which has become adapted for tick transmission between cattle. The absence of obvious enrichment for positively selected amino acid residues within defined epitopes indicates either that diversity is not predominantly driven by selection exerted by host T cells, or that such selection is not detectable by the methods employed due to unidentified epitopes elsewhere in the antigens. Further functional studies are required to address this latter point.</p&gt
    • …
    corecore